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AbslracL Re behaviour of the 'general effeclive-medium equation' near the permlalion 
threshold of isolalor-conductor mixlures has teen analysed. A simple modification is 
proposed which renders lhe equation more mnsistent with fundamental scaling laws. 

1. Intduct ion 

In a series of papers McLachlan d d 11-12] have extensively discussed the electrical 
conductivity (and other transport properties) in percolating systems such as sintered 
nickel, carbon-polymer composites, microemulsions, sprayed metal films and model 
ZD media. Their aim is to describe the conductive behaviour over a wide range of iso- 
lator/conductor compositions, including the region around the percolation threshold. 
'Ib match the existing effectivemedium descriptions for such systems with modem 
percolation scaling laws, they have proposed the so-called 'general effectivemedium 
equation' or 'GEM equation': 

C ,  - C' c, - C' 
C ,  + Cz + AC' fz =' 

with 

The symbols ui and f, stand for the conductivities and volume &actions of the isolator 
(i = 1) and conductor (i = 2) phases (f, + fi = 1); f, is the adjustable critical 
volume fraction for percolation of the mnductor phase; the exponent t is treated as 
a second adjustable parameter. The asterisk denotes the effective property of the 
heterogeneous system. 

For the parameter values f, = 1/3, t = 1 the GEM equation reduces to the 
classical symmetric Bruggeman equation [13]. When applied to a mixture with o1 < 
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u2, the latter equation predicts for the divergence of the effective conductivity just 
below the threshold: 

4 = 0 l I f Z  - fer1 fi t f, (4) 

and for the vanishing of this from above the threshold: 

In contrast, the GEM equation yields relations with an adjustable exponent: 

GEM = cilfz - fCl-' Jz t fc 

In practice, the GEM equation proves to be useful in correlating conductivity data 
with composition for a wide variety OF percolating systems. Furthermore, McLachlan 
et a1 have emphasized how-by suitable parameter identification-the GEM equation 
also reproduces existing asymmetric effective-medium expressions for the conductivity 
in mixtures without a percolation threshold. However, from a fundamental point of 
view the GEM equation has its limitations. Although the connection of the parameter 
t with a true critical exponent is often stressed, the GEM relations (6) and (7) cannot 
generally hold simultaneously as critical scaling relations. In fact, modern percolation 
theory [14] states that: 

0. - 01 I JZ - fc I - *  (8) 

U* - 0 2 1 f 2  - f,l' JZ I fc (9) 

Jz T fc 

with, in principle, distinct exponents 6 and 2, which should take universal values for 
a large class of percolating systems. For dimension D = 2 one can prove that s and 
t are indeed equal [15], with an estimated value 

8 = t a 1.30 D = 2  (10) 

but for dimension D = 3 estimates are: 

s a 0.73 t a 1.9-2.0. (11) 

It is clear that if, for D = 3, the GEM equation is to reproduce the true scaling 
behaviour in an actual isolator-conductor miuture, it can only make separate fits 
of the regions J2 < fc and J2 > f,. Moreover, the continuous interpolation that 
the equation provides between the two regions yields in particular for the effective 
conductivity at the threshold: 

 EM,^ - PZ J, = fc. (12) 

The Same result is predicted by the original Bruggeman equation. In practice, how- 
ever, this result should read [14]: 

f 2  = J, (13) 0; - u u c l - u  
1 1  
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with 

The difference between (12) and (13) is relevant, for example, for the critical Scaling 
with frequency in a threedimensional mixture of a dielectric and a conductor. In 
fact, substitution of u1 = i w q  yields a complex critical effective permittivity 

?he exponent U may in particular be evaluated from the frequency-independent 
critical loss angle: 

(16) 
x 6, = arctg [(I - . 

The critical scaling with frequency and the critical loss angle have been investigated 
experimentally on various systems [16-18], and found to be essentially in accordance 
with (14)-(16). As explained, such behaviour cannot be described with the GEM 
equation. 

2. Generalization of the chl equation 

The purpose of the present communication k to show that the shortcomings of the 
GEM equation indicated here, Le., formally equal exponents s and t ,  and the inher- 
ently incorrect critical scaling with bequency, can be repaired in a very simple way. 
The subcritical GEM scaling relation (6) comes about by putting in (1) C l ,  E' << E,, 
as a result of which the exponent i drops from the second term in (1). Conversely, the 
supercritical GEM scaling relation (7) is found by putting C, << C',&, which elimi- 
n a t e  t from the first term. So it is obvious that equation (1) should be generalized 
to: 

c, - C' Tz - T' 
f 2  = 0 C, +AX' f1 + Tz + AT' 

with 

c = 0 1 1 s  (18) 
T = u1It  (19) 

and again equation (3). Eliminating the denominators from (17) we obtain: 

(ZIT2 -ZIT') + (C'T, - Z I T ' ) [ ( A +  1) fi - 1) - (C'T' - CIT*)A  = 0 .  (20) 

We are interested in the scaling region, ie. in effective conductivities satkQing u1 
a* < uz, so that the terms involving the products C,T* can always be neglected. 
Introducing 
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we then get, in this region: 

ClT2 + Y T 2 A  - C ' T A  = 0 .  

The subcritical region (T'A a T,A) is governed by the first two terms in this 
equation, and yields the scaling law (8), as envisaged. In the supercritical region 
(Cl a P A )  the last two terms are retained, and similarly give the scaling law (9). 
The scaling behaviour at the threshold has not been envisaged, but follows by putting 
A = 0.  The first and thud terms of (22) then lead to: 

and hence, with (3) and (14): 

= ( fc-l - l ) - S U o U a ' - U  1 2  f z  = fc. (24 
So our-admittedly semi-empirical-modifcation of the equally semi-empirical GEM 
equation also naturally repairs the incorrect GEM prediction (12) at the threshold. 

In the spirit of the present paper s and t are well-known critical exponents, and no 
ambiguity is introduced by extending the GEM equation by an additional parameter. 
However, in the original papers [l-121 the single exponent t is often treated as a 
componentspecific morphology parameter, and related to the depolarization factor L 
that enters the asymmetric effective-medium equations [3]. Since the latter equations 
coincide in form with the scaling relations (8) or (9) it is always clear whether s or t 
should be related to L, and again no ambiguity occurs. 

3. The scaling function 

The separate scaling relations (8), (9) and (13) with (14), have been cast into one 
'scaling ansae' by Straley [U, 191 and others [20,21]: 

0: = 021fz - f c l ' F * ( ~ )  (U) 

where the f sign refers to fi 2 f,. The scaling functions F,(I) should both be 
regular near the origin, with F+(O) > F-(O) = 0 and FL(0) > 0. For asymptotically 
large I the two functions should be equal, positive and proportional to xu. With 
these restrictions, the ansa@ (25) with (26) guarantees the correct scaling behaviour 
below, at, and above the percolation threshold. We now want to analyse the new 
equation (17) in the light of this ansa&. 'Ib this end we write for the solution of (22): 

T' = T , I A I G ~ / ~ A - ~ .  (27) 

Wlth G = 1, equation (27) would be the scaling law (9). The correction factor G 
specifying the deviation from that scaling law is determined by substituting (27) into 
(22) and using (18) and (19). This gives after some algebra: 

G(G"* - q5 = (W 
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where 

6 = sgn(A) (29) 

and 

y = A t S .  

So G is a function of y which furthermore only depends on the sign 6. In fact, we 
have from (28): 

G+(y) = 1 + ty”” + . . . y -t 0 

G-(Y) = Y - SY 1+1’* + . . . y + 0 

G*(y) = y= + . . . y - CO. 

Comparison of (27) and (30) with (25) and (26) shows that G and y differ from F 
and I only by trivial factors. From equations (31)-(33) we then conclude that in 
lowest order the solution (27) of the modilied GEM equation obeys the scaling ansa&. 
Higher-order terms near the origin are non-analytic, as are the corresponding terms 
in the original GEM equation. However, these corrections to the dominant scaling 
behaviour are anyway diflicult to access experimentally. 

A Conclusion 

We have pointed out that the ‘general effective-medium equation’ or GEM equation 
(1)-(3), although very useful in fitting conductivity data of isolator-conductor mix- 
tures, does not provide the correct conductivity scaling laws simultaneously below, at, 
and above the percolation threshold. This shortcoming is easily remedied by modify- 
ing the GEM equation into equation (17)-(19) of this paper. The modified equation 
obeys Straley’s scaling unsua, however, with a scaling function that has non-analytic 
higher-order terms near the origin. 
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